

Membrane processes for gas separation

Marina Micari

Lecture 7

29.10.2024

Reference book: Membrane Technology and Applications, R. W. Baker, Wiley 2012 (3rd ed.)

Intended learning outcome

- Understand how separation via membranes works
- Describe mass transfer mechanisms inside the membrane module
- Learn how to simulate and design membrane processes

THEORY

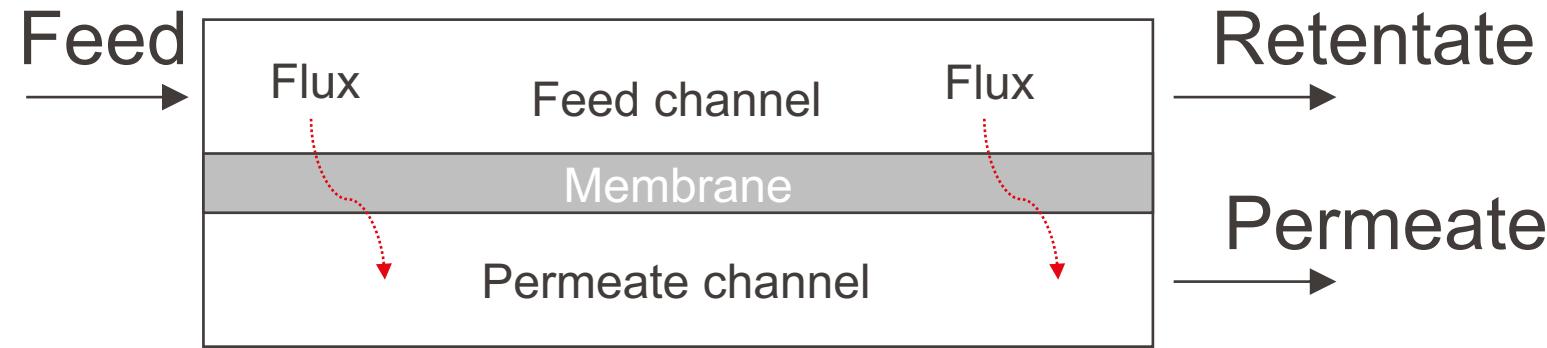
- What is a membrane stage?
- How to calculate transmembrane flux?
- How to model a membrane stage?
- How to design multi-stage processes?
- Which non-ideal phenomena should be accounted for?

EXERCISE

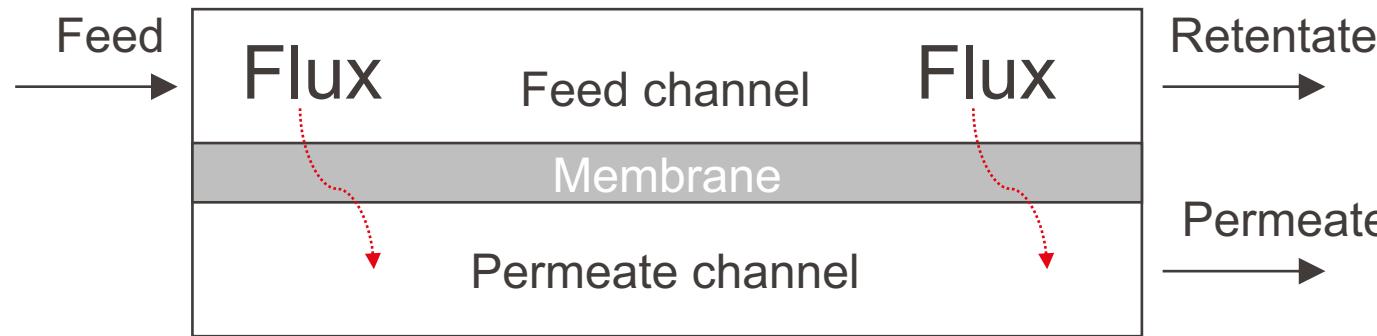
- ✓ Building the model for a single stage
- ✓ Building the model for a double stage
- ✓ Simulations

Group projects presentations on 12.11

- Groups of 3 students (11-12 groups) → ~ 12 minutes per group (presentation + questions)
- Group work:
 - build your model for the single stage and the double stage process (without recycle)
 - Validate the model by comparing some exemplary results.
 - Assess the impact of given inputs and parameters on the outputs



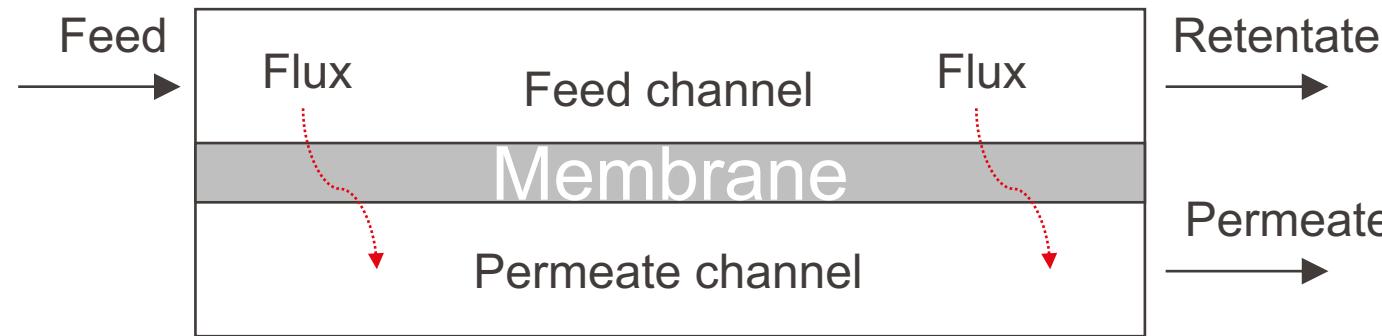
Membrane module, definitions



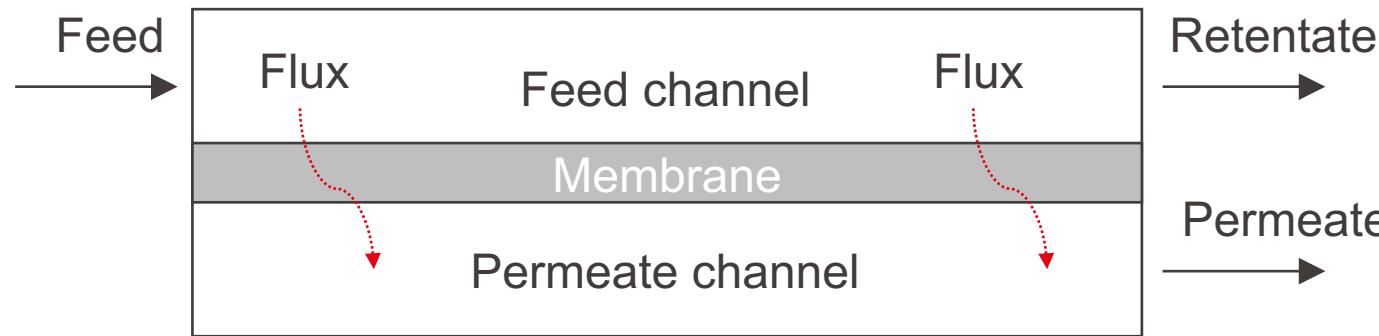
Transmembrane flux $\left[\frac{mol}{m^2 s} \right] = k \times \text{driving force} =$

$= \text{Mass transfer coefficient} \times \text{chemical potential gradient}$

Membrane module, definitions



- ✓ **Membrane permeance:** measure of the flux of a component through the membrane for a given driving force;
- ✓ **Membrane selectivity:** ratio between the permeance of two components = $\frac{\text{Permeance } A}{\text{Permeance } B}$



Outputs

- ✓ **Product recovery:** ratio between the content of the product in the permeate stream and the content in the feed stream = $\frac{Q_{i,p}}{Q_{i,f}} = \frac{X_{i,p}Q_p}{X_{i,f}Q_f}$
- ✓ **Product purity:** concentration of the product in the outlet permeate stream = $X_{i,p}$

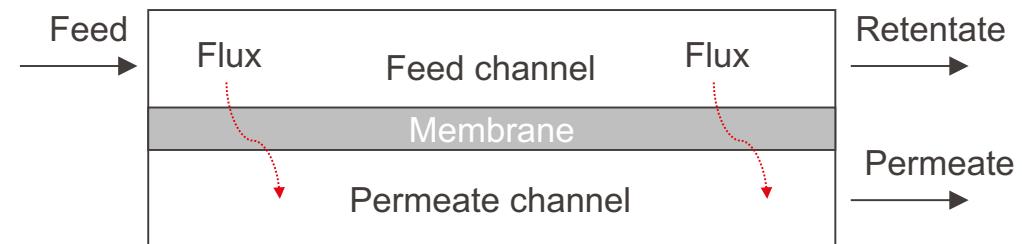
Overall balances on the membrane stage

- Total mass balance

$$Q_f = Q_r + Q_p$$

- Mass balance for component i

$$X_{i,f} Q_f = X_{i,r} Q_r + X_{i,p} Q_p$$



$$\sum X_{i,f} = \sum X_{i,r} = \sum X_{i,p} = 1$$

- Total mass balance on the feed channel

$$Q_f = Q_r + \int_0^A J \, dA$$

- Mass balance for component i on the feed channel

$$X_{i,f} Q_f = X_{i,r} Q_r + \int_0^A J_i \, dA$$

$$\sum J_i = J$$

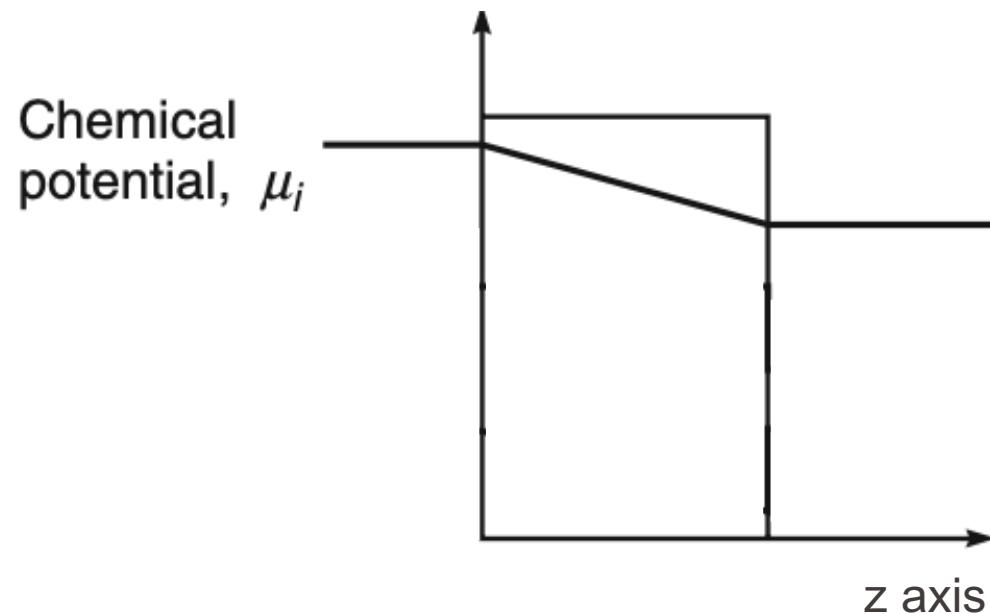
How do we calculate J ?

Transport mechanism through the membrane

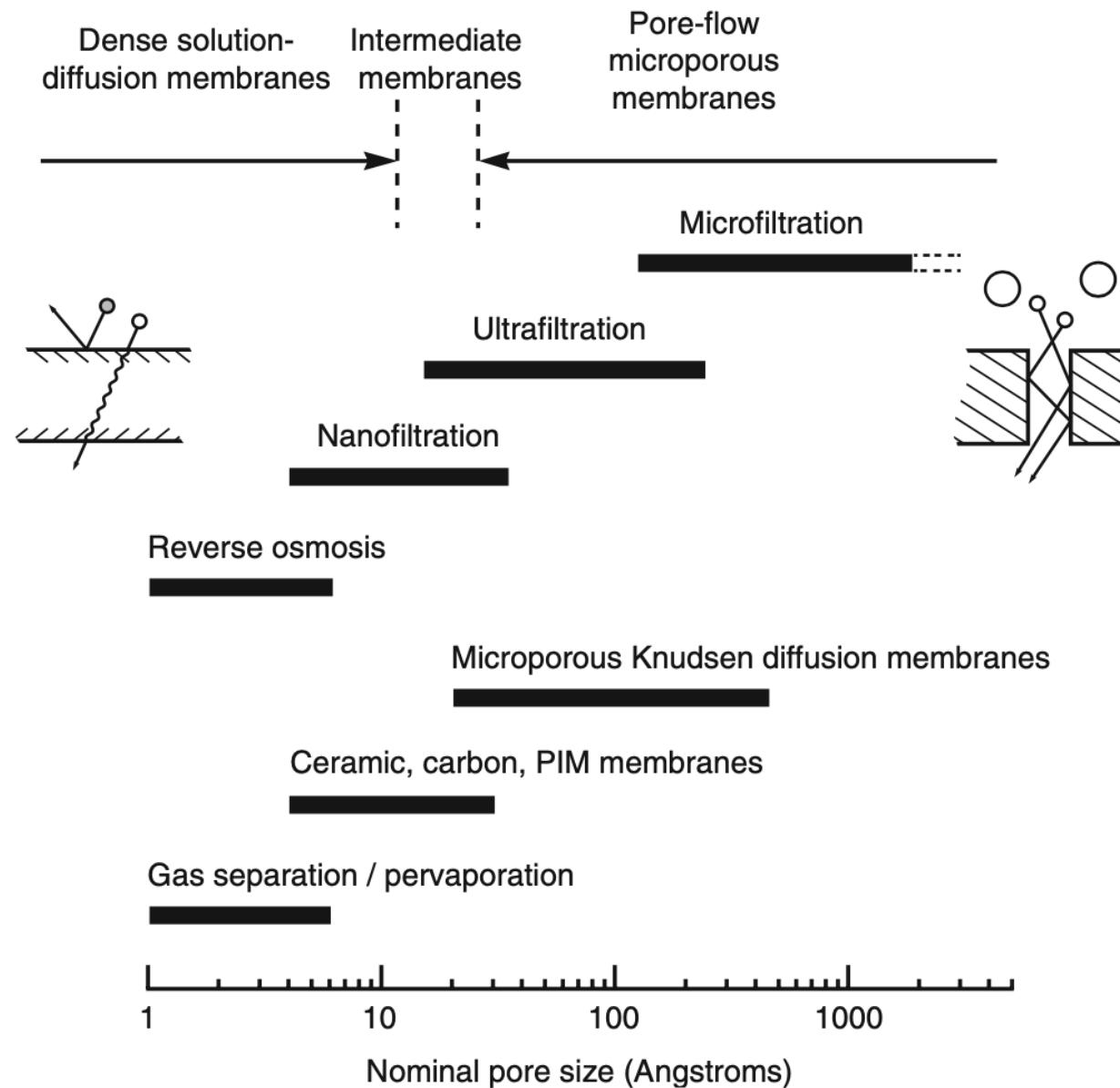
- Generic definition of the flux as function of chemical potential gradient

$$J_i = -L_i \frac{d\mu_i}{dz}$$

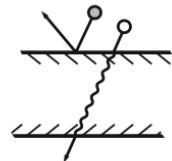
$$d\mu_i = RT \, d\ln(\gamma_i X_i) + v_i \, dp$$



Transport mechanism through the membrane



Dense membranes

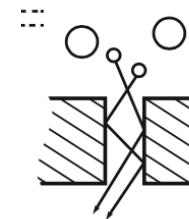


Flux driven by the **concentration gradient**

Transport based on solution-diffusion

Selectivity based on solubility and diffusivity

Porous membranes



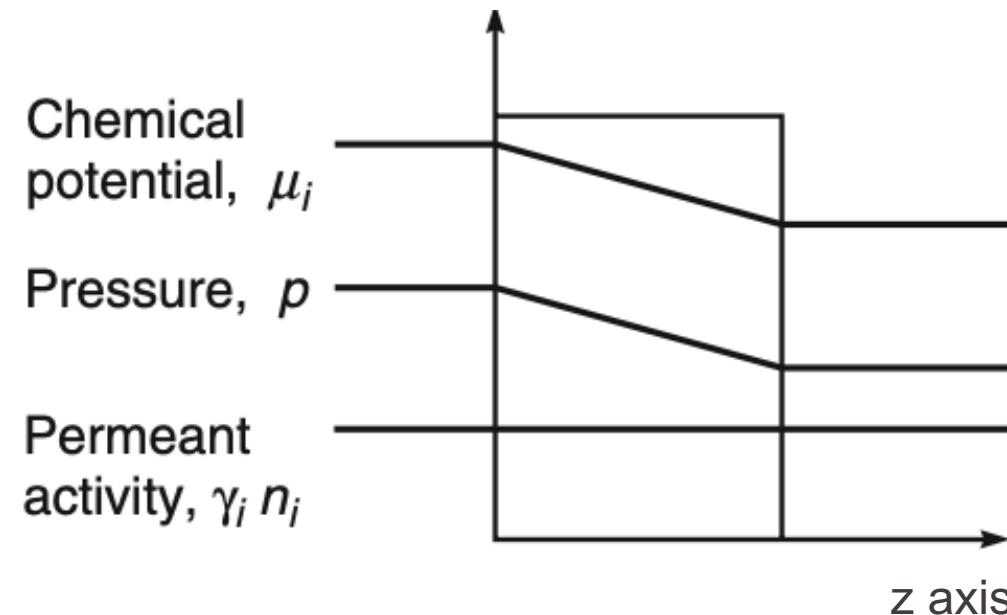
Flux driven by the total **pressure gradient**

Transport based on viscous flow and diffusion

Selectivity based on pore size

Porous membranes

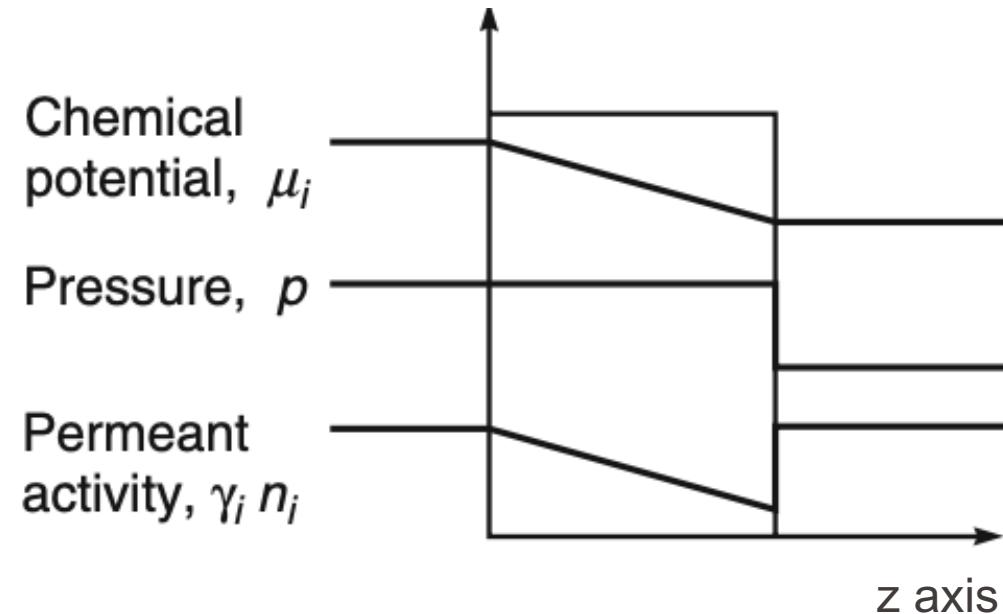
- Pore-flow model assumes that concentration is uniform within the membrane -> only pressure gradient



Transport mechanism through the membrane

Dense membranes

- Solution-diffusion model assumes that pressure is uniform within the membrane -> only concentration gradient



$$J_i = -L_i \frac{d\mu_i}{dz} = -L_i RT \frac{d \ln(\gamma_i X_i)}{dz} = -L_i \frac{RT}{X_i} \frac{dX_i}{dz}$$

uniform pressure

When we refer to the concentration C_i [kg/m³]

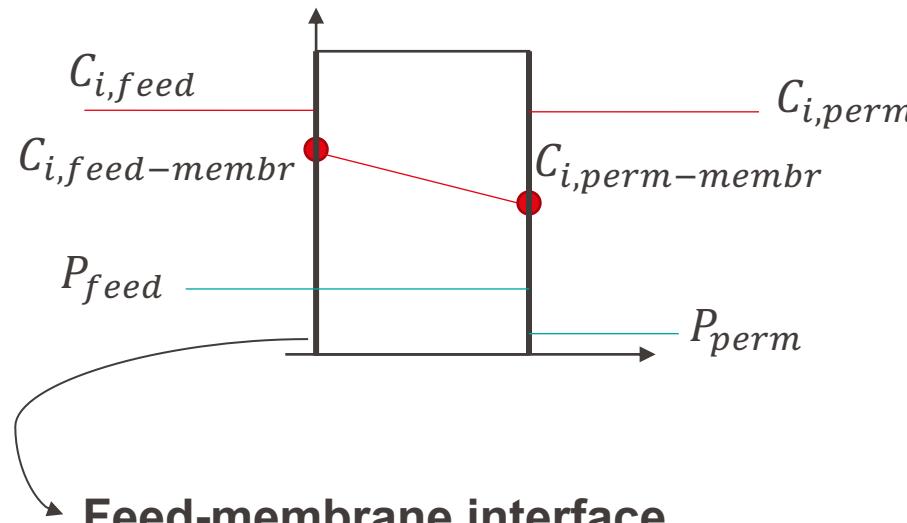
$$J_i = -L_i \frac{RT}{C_i} \frac{dC_i}{dz} = -D_i \frac{dC_i}{dz} \quad \rightarrow \quad \frac{D_i}{\delta} (C_{i,feed-membr} - C_{i,perm-membr})$$

same form as the Fick's law

We need a function of the concentrations in the gaseous phase:

$$C_{i,feed} - C_{i,perm}$$





Equation of the chemical potentials at the gas-membrane interface

$$\mu_{i,gas} = \mu_{i,membrane}$$

compressible incompressible

$$\mu_i^0 + RT \ln(\gamma_i^G X_{i,feed}) + RT \ln\left(\frac{p_{feed}}{p_{i,sat}}\right) = \mu_i^0 + RT \ln(\gamma_i^{membr} X_{i,feed-membr}) + \nu_i (p_{feed} - p_{i,sat})$$

p_{i,feed}

$$X_{i,feed-membr} = \frac{\gamma_i^G X_{i,feed} p_{feed}}{\gamma_i^{membr} p_{i,sat}} \exp\left(-\frac{\nu_i (p_{feed} - p_{i,sat})}{RT}\right)$$

$$C_i = m_i \rho_m X_i$$

C_{i,feed-membr}

$$C_{i,feed-membr} = \frac{\gamma_i^G m_i \rho_m p_{i,feed}}{\gamma_i^{membr} p_{i,sat}} \exp\left(-\frac{\nu_i (p_{feed} - p_{i,sat})}{RT}\right)$$

K_{i,G}

Feed-membrane interface

$$C_{i,feed-membr} = K_{i,G} p_{i,feed} \exp\left(-\frac{v_i(p_{feed} - p_{i,sat})}{RT}\right)$$

$$J_i = -D_i \frac{dC_i}{dz} = \frac{D_i K_{i,G} (p_{i,feed} - p_{i,perm})}{l} \times$$

Partial pressure difference
across the membrane

Permeate-membrane interface

$$C_{i,perm-membr} = K_{i,G} p_{i,perm} \exp\left(-\frac{v_i(p_{feed} - p_{i,sat})}{RT}\right)$$

v_i molar volume in the membrane material

$$\times \exp\left(-\frac{v_i(p_{feed} - p_{i,sat})}{RT}\right)$$

Poynting correction ~ 1

Total pressure on the feed side

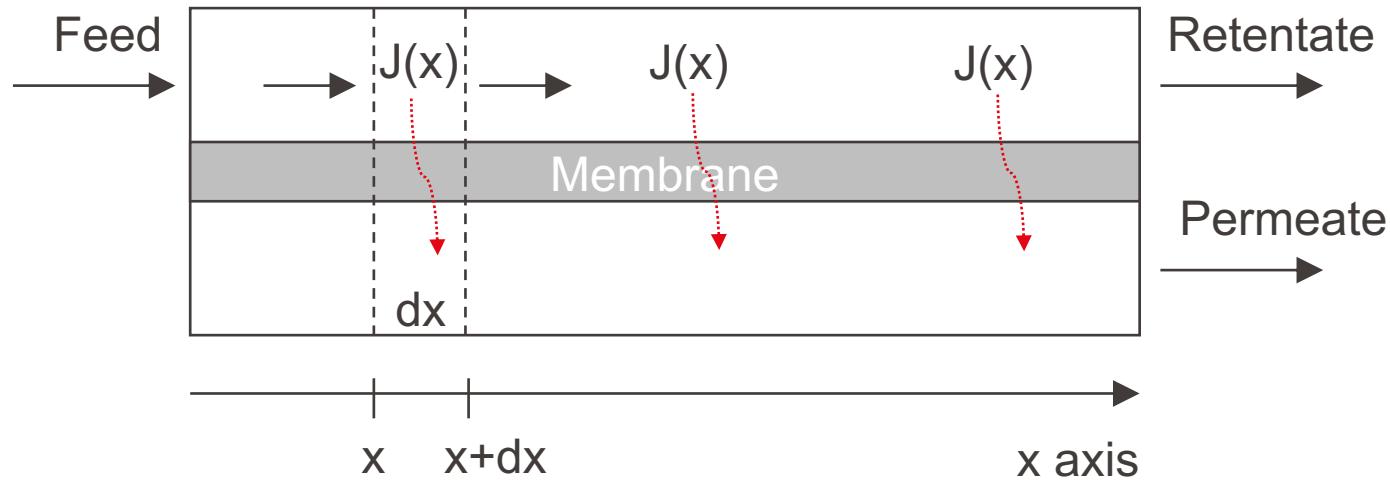
$$J_i = \frac{D_i K_{i,G} (p_{i,feed} - p_{i,perm})}{l} = \frac{P_{i,G} (p_{i,feed} - p_{i,perm})}{l}$$

Permeability coefficient $P_{i,G}$ given by the product of diffusivity D_i and sorption coefficient $K_{i,G}$

Modelling a membrane module

1-dimensional model: discretization along the direction of the feed stream (x axis)

Co-current flow arrangement



Assumptions

- No variation along the width
- Permeance independent of X
- Negligible pressure drops
- Isothermal process
- Well mixed feed and permeate channels

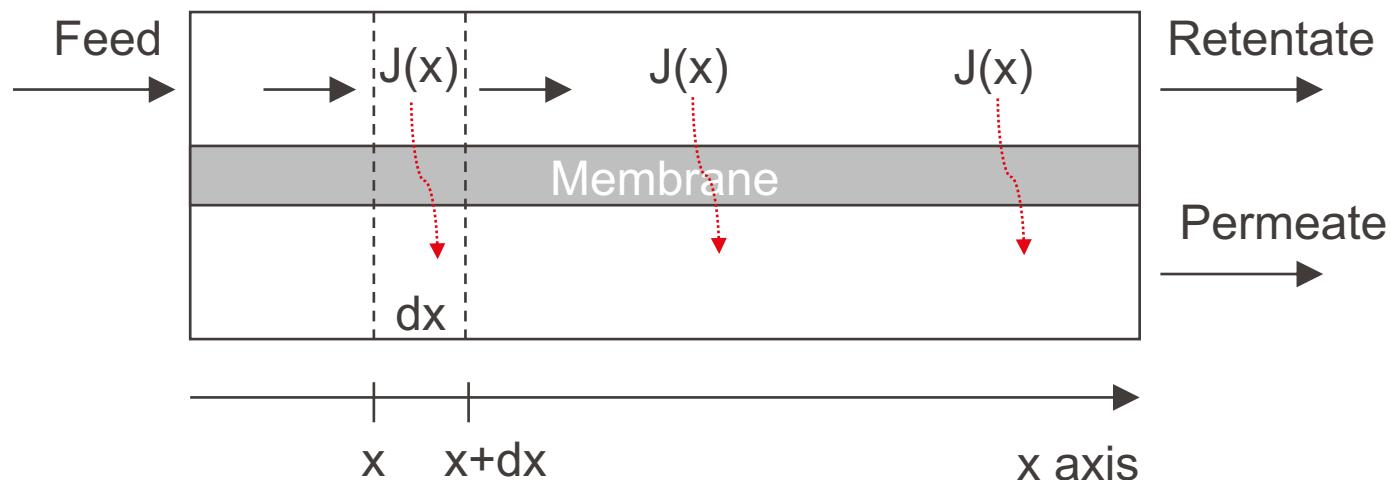
$$J_i(x) = \frac{P_{i,G} (p_{i,feed}(x) - p_{i,perm}(x))}{l} = P_i (P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x))$$

$$J(x) = \sum_{components} J_i(x)$$

Modelling a membrane module

1-dimensional model: discretization along the direction of the feed stream (x-axis)

Co-current flow arrangement



Feed side

$$Q_r(x) = Q_f(x) - J(x) dA$$

$$X_{i,r}(x) Q_r(x) = X_{i,f}(x) Q_f(x) - J_i(x) dA$$

$$Q_f(x+1) = Q_r(x)$$

$$X_f(x+1) = X_r(x)$$

Permeate side

$$Q_P(x) = Q_{feed} - Q_r(x)$$

$$X_{i,p}(x) Q_p(x) = X_{i,feed} Q_{feed} - X_{i,r}(x) Q_r(x)$$

$$\begin{aligned} J_i(x) &= \frac{P_{i,G} (p_{i,feed}(x) - p_{i,perm}(x))}{l} \\ &= P_i (P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x)) \\ J(x) &= \sum_{\text{components}} J_i(x) \end{aligned}$$

Modelling a membrane module

Equation	N equation
$J_i(x) = P_i \left(P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x) \right)$	$N_{\text{components}} \times N_{\text{elem}}$
$J(x) = \sum_{\text{components}} J_i(x)$	N_{elem}
$Q_r(x) = Q_f(x) - J(x) dA$	N_{elem}
$X_{i,r}(x) Q_r(x) = X_{i,f}(x) Q_f(x) - J_i(x) dA$	$N_{\text{components}} \times N_{\text{elem}}$
$Q_P(x) = Q_{feed} - Q_r(x)$	N_{elem}
$X_{i,p}(x) Q_p(x) = X_{i,feed} Q_{feed} - X_{i,r}(x) Q_r(x)$	$N_{\text{components}} \times N_{\text{elem}}$
$Q_f(x+1) = Q_r(x)$	$N_{\text{elem}} - 1$
$X_{i,f}(x+1) = X_{i,r}(x)$	$N_{\text{components}} \times (N_{\text{elem}} - 1)$
$Q_f(0) = Q_{feed}$	1
$X_{i,f}(0) = X_{i,feed}$	$N_{\text{components}}$
	total: $4 N_{\text{components}} \times N_{\text{elem}} + 4 N_{\text{elem}}$

Variable	N variable
$J_i(x)$	$N_{\text{components}} \times N_{\text{elem}}$
$J(x)$	N_{elem}
$Q_r(x)$	N_{elem}
$X_{i,r}(x)$	$N_{\text{components}} \times N_{\text{elem}}$
$Q_P(x)$	N_{elem}
$X_{i,p}(x)$	$N_{\text{components}} \times N_{\text{elem}}$
$Q_f(x)$	N_{elem}
$X_{i,f}(x)$	$N_{\text{components}} \times N_{\text{elem}}$
	total: $4 N_{\text{components}} \times N_{\text{elem}} + 4 N_{\text{elem}}$

For given P_{feed} , P_{perm} and A

$$N_{\text{equations}} = N_{\text{variables}}$$

Simulation

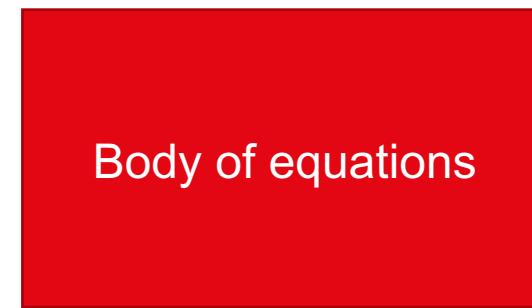
Design variable (**A**) and
operating conditions
(P_{feed} , P_{perm})



Recovery and purity

Design

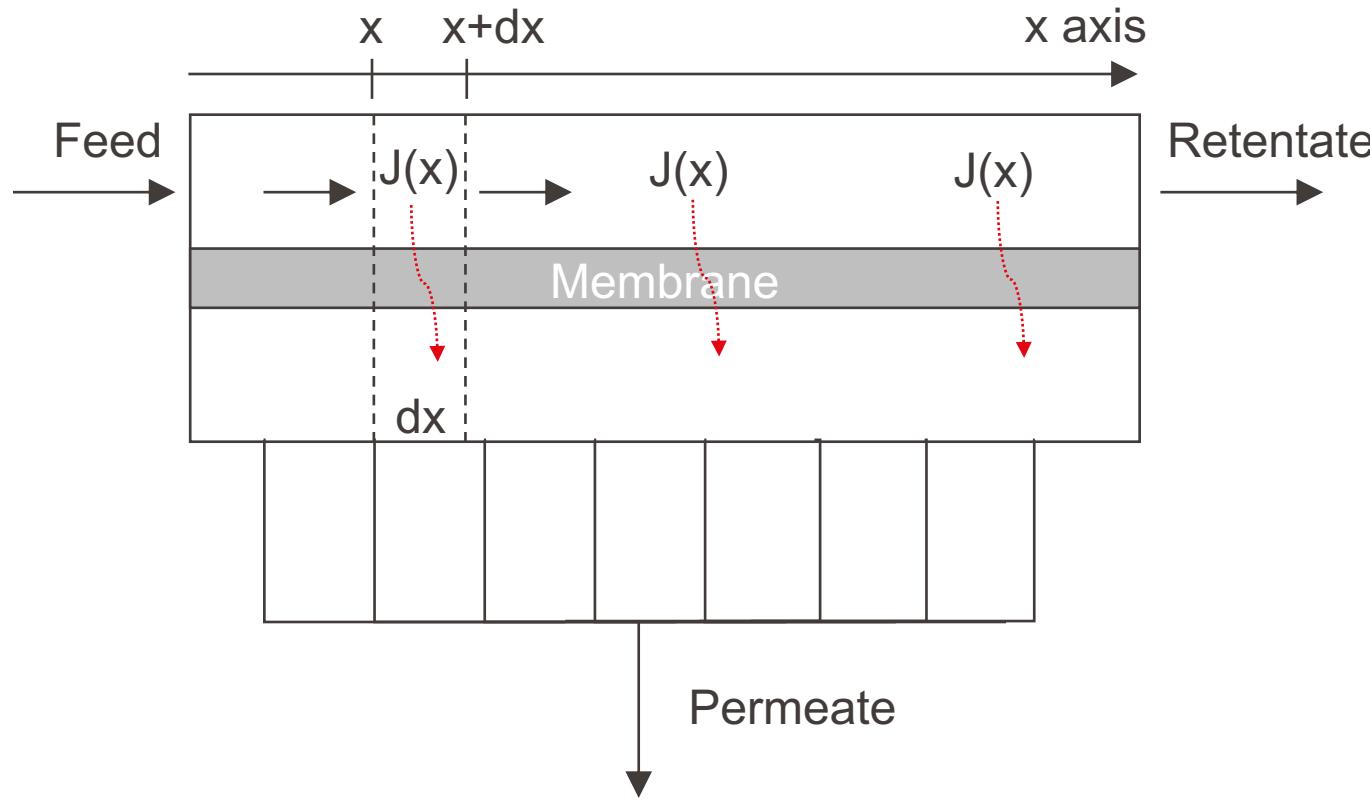
Recovery and purity targets



Design variable (A) and P_{perm}

Membrane module: flow arrangements

Cross-current flow arrangement



No mixing in the permeate channel

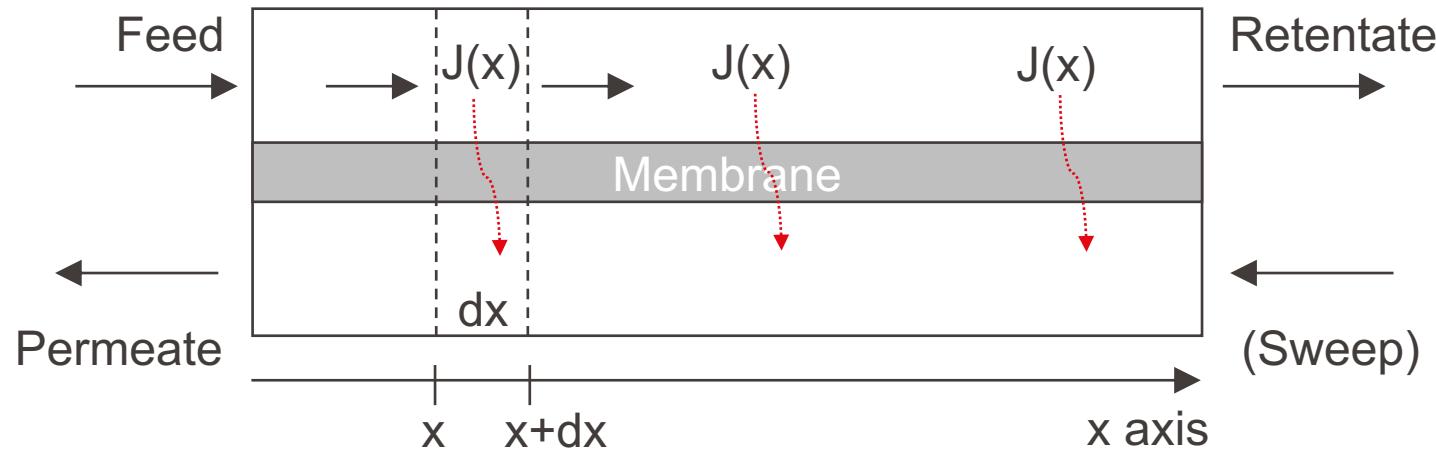
$$J_i(x) = \frac{P_{i,G} (p_{i,feed}(x) - p_{i,perm}(x))}{l}$$

$$= P_i (P_{feed} X_{i,feed}(x) - P_{perm} X'_{i,perm}(x))$$

$$Q_{p,out} = \sum_{x=0}^L J(x) dA$$

$$X_{i,p,out} = \frac{\sum_{x=0}^L J_i(x) dA}{Q_{p,out}}$$

Counter-current flow arrangement



$$J_i(x) = \frac{P_{i,G} (p_{i,feed}(x) - p_{i,perm}(x))}{l}$$

$$= P_i (P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x))$$

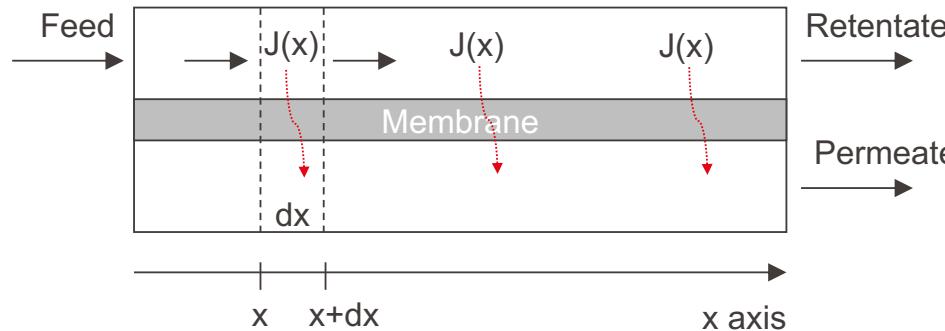
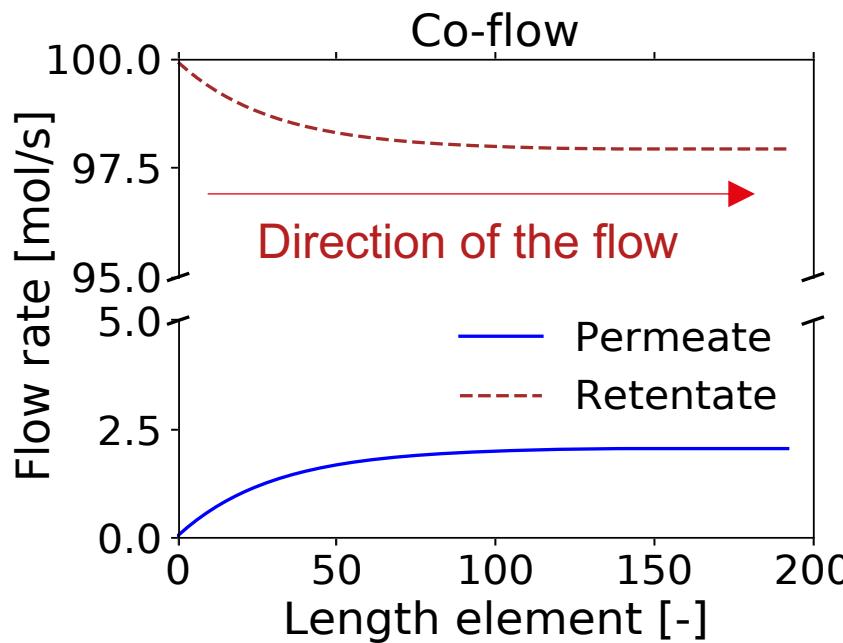
Permeate side

$$Q_p(x) = Q_p(x + dx) + J(x) dA$$

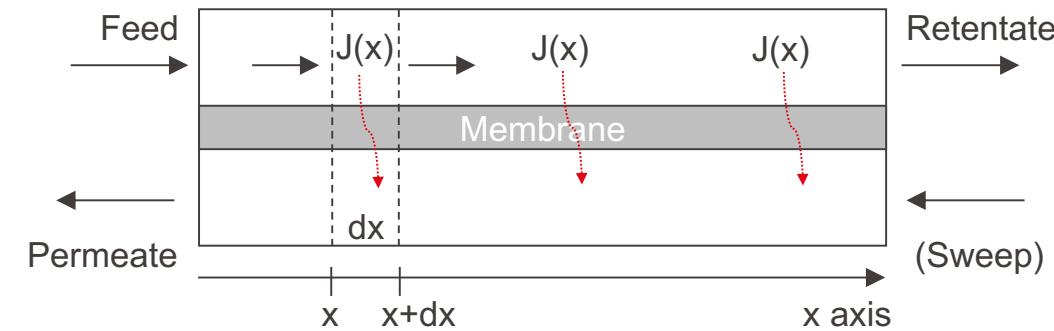
$$X_{i,p}(x) Q_p(x) = X_{i,p}(x + dx) Q_p(x + dx) + J_i(x) dA$$

Profiles along the membrane module

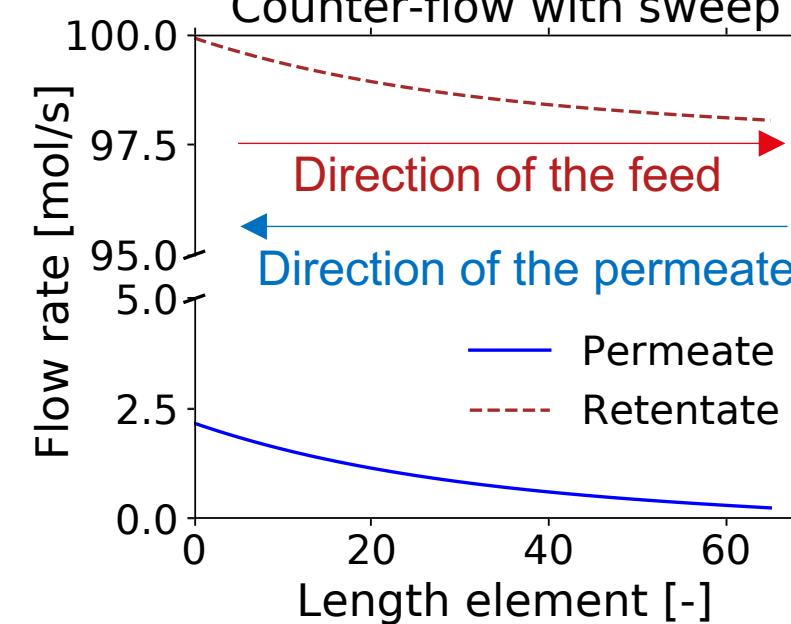
Co-current flow arrangement



Counter-current flow arrangement



Counter-flow with sweep



- Reduced driving force along the length

Almost constant driving force along the length

Multi-stage configurations

To achieve purity and recovery > 90% with one module, one would need very high permeance and selectivity & very high driving force (high P_{feed} , low P_{perm})

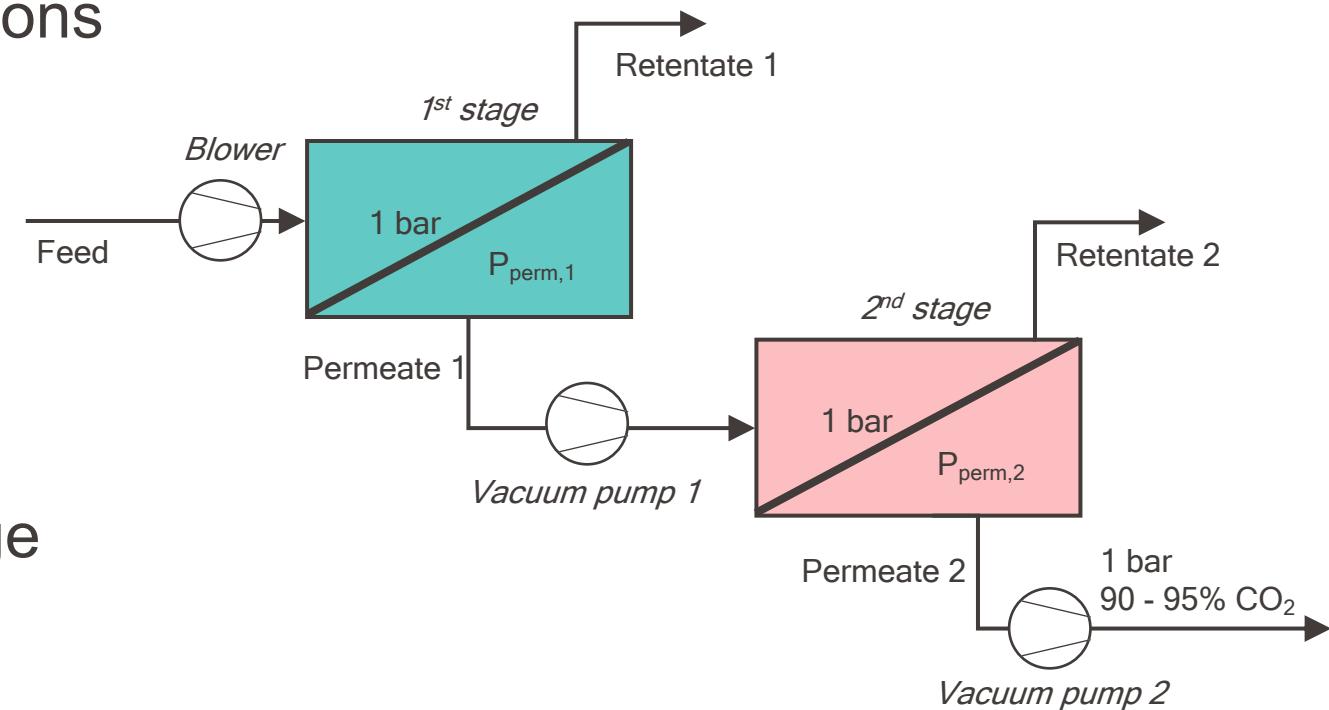
$$J_i(x) = P_i \left(P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x) \right) > 0 \text{ if } \frac{P_{feed}}{P_{perm}} > \frac{X_{i,perm}}{X_{i,feed}} \quad \text{Max separation limited by pressure ratio}$$

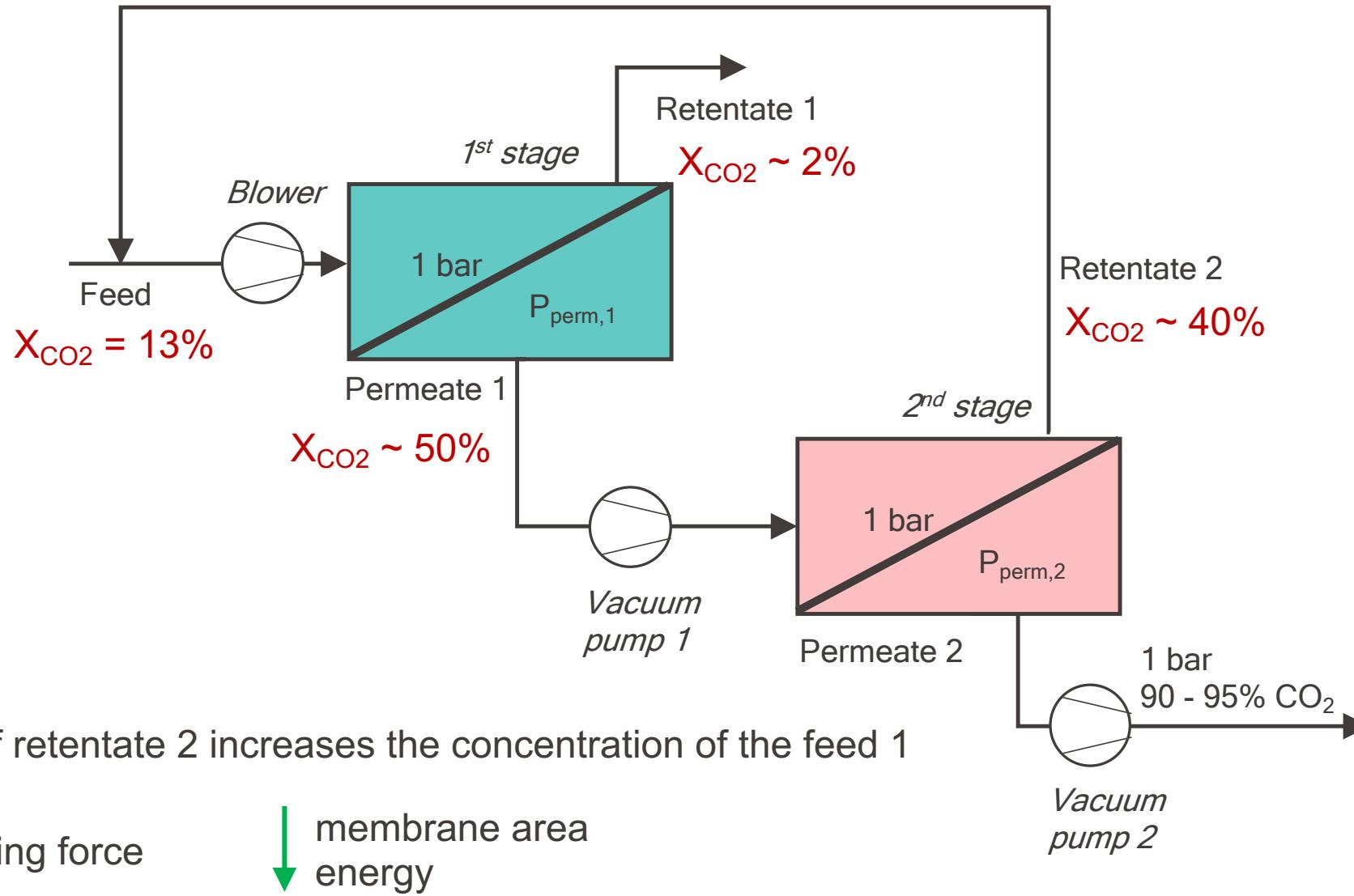
Alternative: multi-stage configurations

$$Q_{feed,2} = Q_{perm,1}$$

$$X_{CO_2,feed,2} = X_{CO_2,perm,1}$$

Higher driving force in the 2nd stage





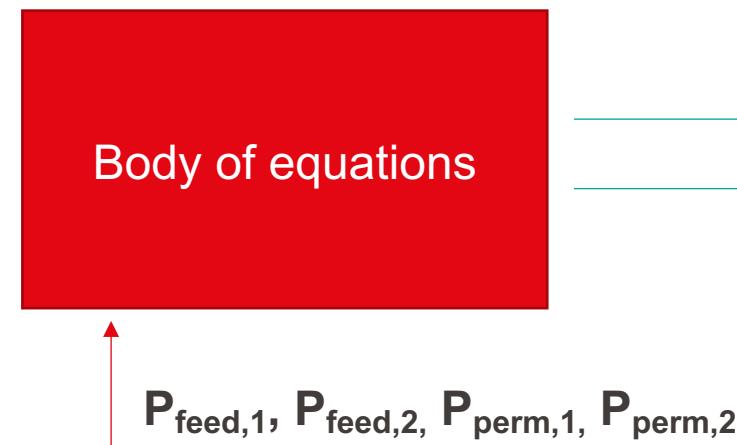
Simulation

Design variable (A_1, A_2) and
operating conditions
($P_{\text{feed},1}, P_{\text{feed},2}, P_{\text{perm},1}, P_{\text{perm},2}$)

Global recovery and purity

Design

Recovery and
purity targets



Design variables (A_1, A_2)

$P_{\text{feed},1}, P_{\text{feed},2}, P_{\text{perm},1}, P_{\text{perm},2}$

THEORY

- What is a membrane stage?
- How to calculate transmembrane flux?
- How to model a membrane stage?
- How to design multi-stage processes?
- Which non-ideal phenomena should be accounted for?

EXERCISE

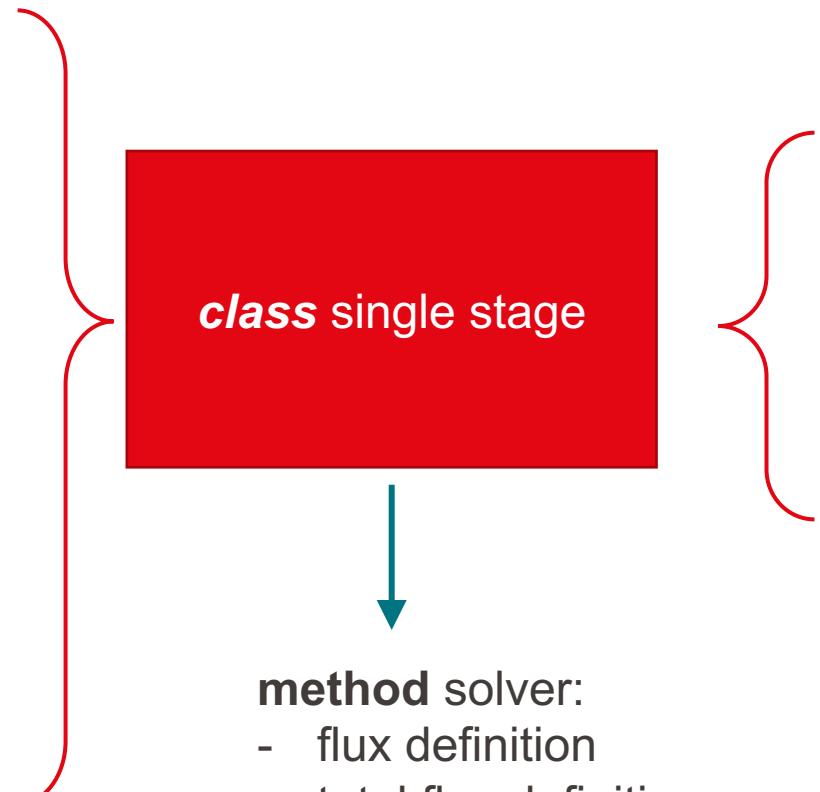
- ✓ Building the model to simulate a single stage
- ✓ Building the model to simulate a double stage (without recycle)
- ✓ Simulations

Inputs:

- feed concentration (CO_2, N_2)
- feed flow rate [mol/s]
- feed pressure [bar]
- permeate pressure [bar]
- membrane area [m^2]

Parameters:

- membrane permeance
[GPU to convert in $\text{mol}/(\text{m}^2\text{sPa})$]
- membrane CO_2/N_2 selectivity
- geometrical properties
(width B: 1 m,
discretization element dx : 0.1 m)



class single stage

Outputs:

- permeate concentration
- permeate flow rate
- retentate concentration
- retentate flow rate
- recovery
- purity

method solver:

- flux definition
- total flux definition
- mass balance on the retentate
- mass balance on the permeate
- next element feed definition

Model for the single-stage process

Solver

Binary mixture (CO2-N2)

Negligible pressure drops and concentration polarization

Cross-current flow arrangement

for i in range (N_elem):

$$X'_{CO2,p}[i] = \frac{1+(\alpha-1)(\beta+X_{CO2,f}[i]) - \sqrt{[1+(\alpha-1)(\beta+X_{CO2,f}[i])]^2 - 4\alpha\beta(\alpha-1)X_{CO2,f}[i]}}{2\beta(\alpha-1)}$$

$$J_{CO2}[i] = P_{CO2}(P_{feed} X_{CO2,f}[i] - P_{perm} X'_{CO2,p}[i])$$

$$J_{N2}[i] = P_{N2} (P_{feed} X_{N2,f}[i] - P_{perm} (1 - X'_{CO2,p}[i]))$$

$$Q_r[i] = Q_f[i] - (J_{CO2}[i] + J_{N2}[i]) dA$$

$$X_{CO2,r}[i] Q_r[i] = X_{CO2,f}[i] Q_f[i] - (J_{CO2}[i]) dA$$

$$Q_f[i+1] = Q_r[i] \quad \text{if } i \neq N_elem - 1$$

$$X_f[i+1] = X_r[i]$$

Output: $Q_{ret,out} = Q_r[-1]$

$X_{CO2,ret\ out} = X_{CO2,r}[-1]$

$Recovery = \frac{Q_{perm,out} X_{CO2,perm\ out}}{X_{f,CO2}[0] Q_f[0]}$

■ $Q_{perm,out} = Q_f[0] - Q_{ret,out}$

$$X_{CO2,perm\ out} = Purity = \frac{X_{f,CO2}[0] Q_f[0] - X_{CO2,ret\ out} Q_{ret,out}}{Q_{perm,out}}$$

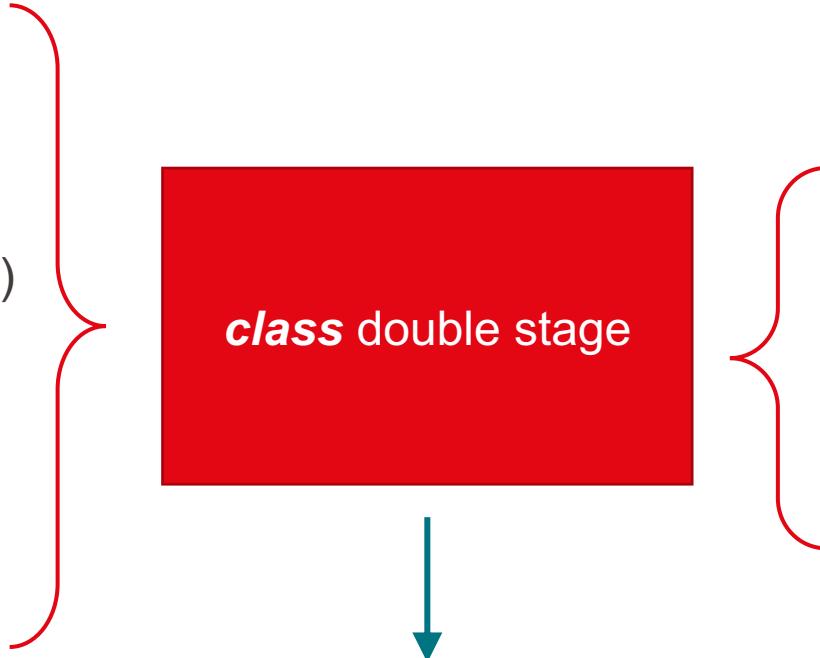
Building the model to simulate a double-stage

Inputs:

- feed concentration
- feed flow rate
- feed pressure (1 and 2)
- permeate pressure (1 and 2)
- membrane area (1 and 2)

Parameters:

- membrane permeance
- membrane selectivity
- geometrical properties



class double stage

Outputs:

- permeate concentration (1 and 2)
- permeate flow rate (1 and 2)
- retentate concentration (1 and 2)
- retentate flow rate (1 and 2)
- global recovery
- global purity

method solver:

- def stage 1 as ***class single stage*** (inputs stage 1, parameters stage 1)
- def feed stage 2 = permeate stage 1
- def stage 2 as ***class single stage*** (inputs stage 2, parameters stage 2)

Validity range Single stage

Permeance = 10000 GPU, Sel = 30

Standard set: $P_f = 1$ bar, $P_p = 0.1$ bar, $X_f = 0.1$, $Q_f = 2.5$ mol/s, $A = 10$ m 2

-> recovery = 0.41, purity = 0.51 [exemplary result for validation]

- A membrane: 1 -100 m 2
- P permeate: 0.01 – 0.5 bar
- Pfeed: 1 – 5 bar
- Qfeed: 1 – 100 mol/s
- X_f : 0.01 – 0.5
- Permeance: 1000 – 10000 GPU
- Selectivity: 20-100

Validity range Double stage

Permeance = 10000 GPU, Sel = 30

Standard set: $P_{f1} = 1$ bar, $P_{p1} = 0.1$ bar, $P_{f2} = 1$ bar, $P_{p2} = 0.2$ bar,
 $X_f = 0.1$, $Q_f = 2.5$ mol/s, $A_1 = 10$ m², $A_2 = 5$ m²

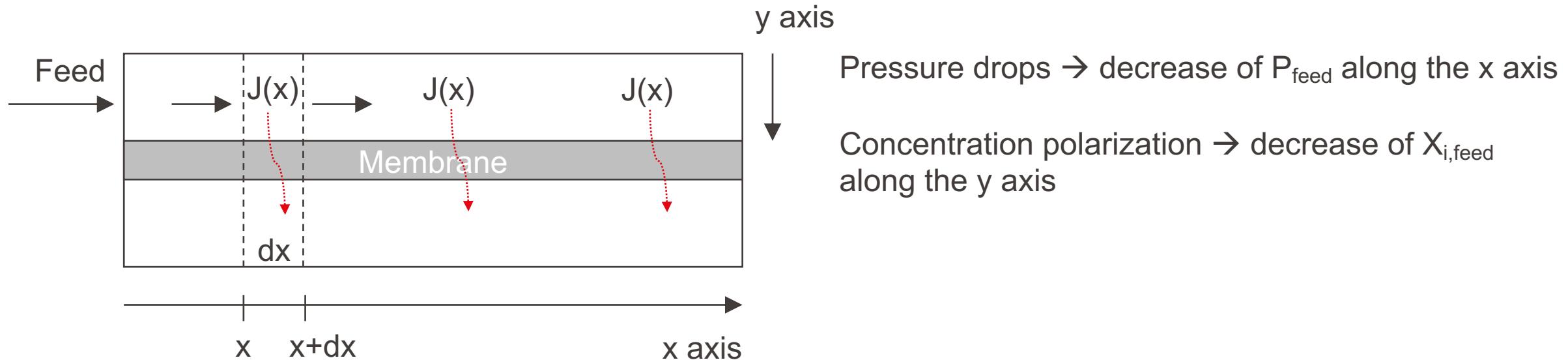
-> recovery = 0.4, purity = 0.71 [exemplary result for validation]

- A membrane1: 5 - 50 m², A membrane 2: 1 - 10 m²
- P permeate 1, P permeate 2: 0.01 – 0.5 bar
- Pfeed1, Pfeed2: 1–5 bar
- Qfeed: 1 – 100 mol/s
- X_f: 0.01 – 0.5
- Permeance: 1000 – 10000 GPU
- Selectivity: 20-100

- Group 1: influence of **feed flow rate** on single and double stage
- Group 2: influence of **feed concentration** on single and double stage
- Group 3: influence of **feed pressure** on single stage and **feed pressure 1** on double stage
- Group 4: influence of **feed pressure** on single stage and **feed pressure 2** on double stage
- Group 5: influence of **permeate pressure** on single stage and **permeate pressure 1** on double stage
- Group 6: influence of **permeate pressure** on single stage and **permeate pressure 2** on double stage
- Group 7: influence of **membrane area** on single stage and **membrane area 1** on double stage
- Group 8: influence of **membrane area** on single stage and **membrane area 2** on double stage
- Group 9: influence of **permeance** on single and double stage (same permeance for both stages)
- Group 10: influence of **selectivity** on single and double stage (same selectivity for both stages)
- Group 11: influence of **permeance of stage 1 and stage 2** of the double stage (varied independently)
- Group 12: influence of **selectivity of stage 1 and stage 2** of the double stage (varied independently)

Expected results for **the single and the double stage** process:

- global recovery and purity variation with the given parameter (e.g., permeance)
- profiles of CO₂ concentration in the feed and permeate channel with 2-3 values of the given parameter in the investigated range
- profiles of CO₂ and N₂ flux with 2-3 values of the given parameter in the investigated range
- profiles of flow rate in the feed channel with 2-3 values of the given parameter in the investigated range



$$J_i(x) = \frac{P_{i,G} (p_{i,feed}(x) - p_{i,perm}(x))}{l} = P_i (P_{feed} X_{i,feed}(x) - P_{perm} X_{i,perm}(x))$$

Non-ideal phenomena

Pressure drops in the feed channel

Pressure drops depend on the velocity v and on the friction factor f

$$\frac{dP_{feed}}{dx} = -f \frac{\rho}{2 d_{hydr}} v^2$$

$$f = \frac{64}{Re} \quad \text{friction factor for laminar flow (Re < 2300)}$$

Common limit on pressure drops for channel design: 1.5 psi/m (0.1 bar/m)

Non-ideal phenomena

Concentration polarization

More permeable component

$$X_{i,perm} > X_{i,f,bulk}$$

$$J_{i,bulk \rightarrow interface} = J_{i,transmembrane}$$

For a binary mixture and cross-current flow arrangement:

$$J_1 = P_1 (P_{feed} X_{1,f,m} - P_{perm} X'_{1,perm})$$

$$J_2 = P_2 (P_{feed} (1 - X_{1,f,m}) - P_{perm} (1 - X'_{1,perm}))$$

mass transfer coefficient k

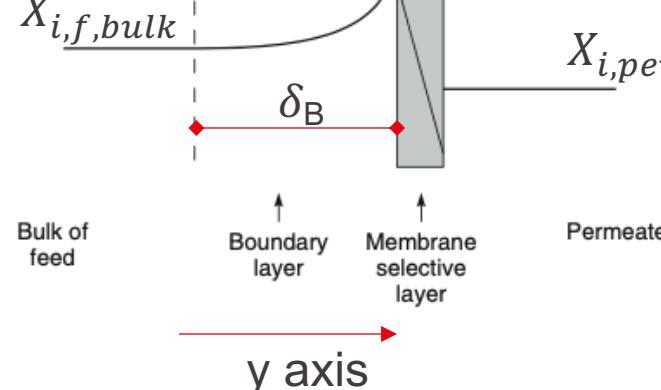
$$k \left[\frac{mol}{m^2 s} \right] = \frac{D}{\delta_B} \frac{P}{RT}$$

Less permeable component

$$X_{i,perm} < X_{i,f,bulk}$$

$$J_1 = X'_{1,perm} (J_1 + J_2) = -D \frac{P_{feed}}{RT_{feed}} \frac{dX_{i,f}}{dy} + X_{i,f} (J_1 + J_2)$$

$J_{i,bulk \rightarrow interface}$ diffusive $J_{i,bulk \rightarrow interface}$ convective



$$\frac{X'_{1,perm} - X_{1,f,m}}{X'_{1,perm} - X_{1,f,bulk}} = \exp \left(\frac{J_1 + J_2}{k} \right)$$

Concentration polarization

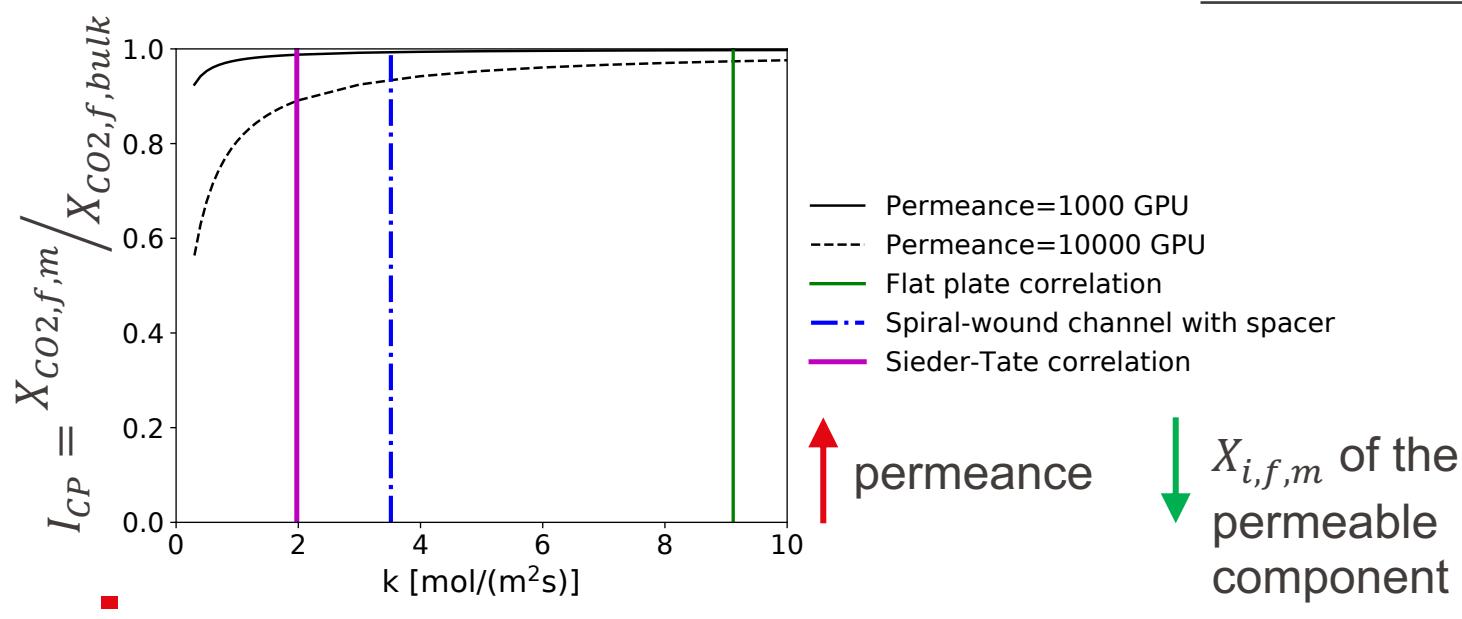
Mass transfer coefficient

Sherwood number Diffusion coefficient

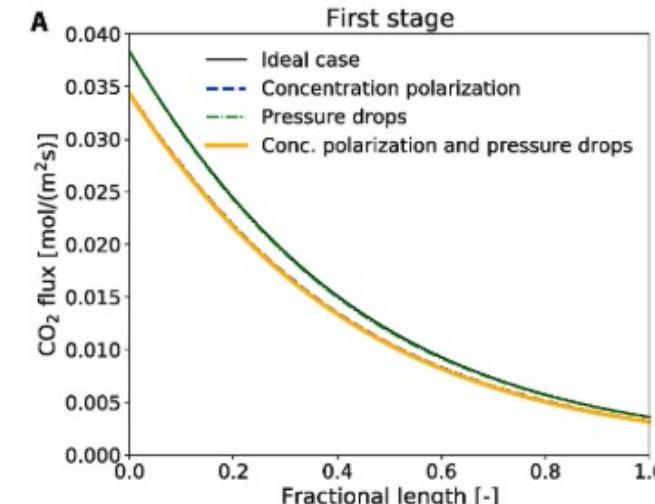
$$k = \left(\frac{Sh D}{d_{hydr}} \right) \frac{P_{feed}}{R T_{feed}}$$

Hydraulic diameter of the channel

$Sh = 0.664 Re^{0.5} Sc^{0.33}$	Boundary layer over a flat plate
$Sh = 0.2 Re^{0.57} Sc^{0.4}$	Channels with spacers in spiral-wound modules
$Sh = 1.86 \left(Re Sc \frac{d_{hydr}}{L} \right)^{1/3}$	Flow in round tubes (Sieder-Tate)



Impact of non ideal effects on the flux



Reynolds number

$$Re = \frac{\rho v d_{hydr}}{\mu}$$

Schmidt number

$$Sc = \frac{\mu}{\rho D}$$

Sherwood number

$$Sh = \frac{k}{D/d_{hydr}}$$

$$Sh = A \, Re^a \, Sc^b$$